Heisenberg Parabolic Subgroup of SO∗(10) and Invariant Differential Operators

Autor: V. K. Dobrev
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Symmetry, Vol 14, Iss 8, p 1592 (2022)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym14081592
Popis: In the present paper we continue the project of systematic construction of invariant differential operators on the example of the non-compact algebra so∗(10). We use the maximal Heisenberg parabolic subalgebra P=M⊕A⊕N with M=su(3,1)⊕su(2)≅so∗(6)⊕so(3). We give the main and the reduced multiplets of indecomposable elementary representations. This includes the explicit parametrization of the intertwining differential operators between the ERS. Due to the recently established parabolic relations the multiplet classification results are valid also for the algebras so(p,q) (with p+q=10, p≥q≥2) with maximal Heisenberg parabolic subalgebra: P′=M′⊕A′⊕N′, M′=so(p−2,q−2)⊕sl(2,IR), M′C≅MC.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje