Topographic and quantitative correlation of structure and function using deep learning in subclinical biomarkers of intermediate age-related macular degeneration

Autor: Klaudia Birner, Gregor S. Reiter, Irene Steiner, Gábor Deák, Hamza Mohamed, Simon Schürer-Waldheim, Markus Gumpinger, Hrvoje Bogunović, Ursula Schmidt-Erfurth
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-11 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-72522-9
Popis: Abstract To examine the morphological impact of deep learning (DL)-quantified biomarkers on point-wise sensitivity (PWS) using microperimetry (MP) and optical coherence tomography (OCT) in intermediate AMD (iAMD). Patients with iAMD were examined by OCT (Spectralis). DL-based algorithms quantified ellipsoid zone (EZ)-thickness, hyperreflective foci (HRF) and drusen volume. Outer nuclear layer (ONL)-thickness and subretinal drusenoid deposits (SDD) were quantified by human experts. All patients completed four MP examinations using an identical custom 45 stimuli grid on MP-3 (NIDEK) and MAIA (CenterVue). MP stimuli were co-registered with corresponding OCT using image registration algorithms. Multivariable mixed-effect models were calculated. 3.600 PWS from 20 eyes of 20 patients were analyzed. Decreased EZ thickness, decreased ONL thickness, increased HRF and increased drusen volume had a significant negative effect on PWS (all p
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje