Autor: |
Jiyi Chen, Pengyu Li, Yutong Wang, Pei-Cheng Ku, Qing Qu |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
APL Machine Learning, Vol 2, Iss 3, Pp 036106-036106-10 (2024) |
Druh dokumentu: |
article |
ISSN: |
2770-9019 |
DOI: |
10.1063/5.0209339 |
Popis: |
This work proposes a deep learning (DL)-based framework, namely Sim2Real, for spectral signal reconstruction in reconstructive spectroscopy, focusing on efficient data sampling and fast inference time. The work focuses on the challenge of reconstructing real-world spectral signals in an extreme setting where only device-informed simulated data are available for training. Such device-informed simulated data are much easier to collect than real-world data but exhibit large distribution shifts from their real-world counterparts. To leverage such simulated data effectively, a hierarchical data augmentation strategy is introduced to mitigate the adverse effects of this domain shift, and a corresponding neural network for the spectral signal reconstruction with our augmented data is designed. Experiments using a real dataset measured from our spectrometer device demonstrate that Sim2Real achieves significant speed-up during the inference while attaining on-par performance with the state-of-the-art optimization-based methods. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|