cAMP Stimulates SLC26A3 Activity in Human Colon by a CFTR-Dependent Mechanism That Does Not Require CFTR ActivitySummary

Autor: Chung-Ming Tse, Jianyi Yin, Varsha Singh, Rafiquel Sarker, Ruxian Lin, Alan S. Verkman, Jerrold R. Turner, Mark Donowitz
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Cellular and Molecular Gastroenterology and Hepatology, Vol 7, Iss 3, Pp 641-653 (2019)
Druh dokumentu: article
ISSN: 2352-345X
DOI: 10.1016/j.jcmgh.2019.01.002
Popis: Background & Aims: SLC26A3 (DRA) is an electroneutral Cl-/HCO3- exchanger that is present in the apical domain of multiple intestinal segments. An area that has continued to be poorly understood is related to DRA regulation in acute adenosine 3′,5′-cyclic monophosphate (cAMP)-related diarrheas, in which DRA appears to be both inhibited as part of NaCl absorption and stimulated to contribute to increased HCO3- secretion. Different cell models expressing DRA have shown that cAMP inhibits, stimulates, or does not affect its activity. Methods: This study re-evaluated cAMP regulation of DRA using new tools, including a successful knockout cell model, a specific DRA inhibitor (DRAinh-A250), specific antibodies, and a transport assay that did not rely on nonspecific inhibitors. The studies compared DRA regulation in colonoids made from normal human colon with regulation in the colon cancer cell line, Caco-2. Results: DRA is an apical protein in human proximal colon, differentiated colonoid monolayers, and Caco-2 cells. It is glycosylated and appears as 2 bands. cAMP (forskolin) acutely stimulated DRA activity in human colonoids and Caco-2 cells. In these cells, DRA is the predominant apical Cl-/HCO3- exchanger and is inhibited by DRAinh-A250 with a median inhibitory concentration of 0.5 and 0.2 μmol/L, respectively. However, there was no effect of cAMP in HEK293/DRA cells that lacked a cystic fibrosis transmembrane conductance regulator (CFTR). When CFTR was expressed in HEK293/DRA cells, cAMP also stimulated DRA activity. In all cases, cAMP stimulation of DRA was not inhibited by CFTRinh-172. Conclusions: DRA is acutely stimulated by cAMP by a process that is CFTR-dependent, but appears to be one of multiple regulatory effects of CFTR that does not require CFTR activity. Keywords: Cl-/HCO3- Exchange, CFTR, Colon, Secretory Diarrhea, Enteroids
Databáze: Directory of Open Access Journals