NAT10 promotes liver lipogenesis in mouse through N4-acetylcytidine modification of Srebf1 and Scap mRNA

Autor: Zhouqi Wang, Xinxing Wan, Md Asaduzzaman Khan, Lin Peng, Xiaoying Sun, Xuan Yi, Ke Chen
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Lipids in Health and Disease, Vol 23, Iss 1, Pp 1-15 (2024)
Druh dokumentu: article
ISSN: 1476-511X
DOI: 10.1186/s12944-024-02360-1
Popis: Abstract Background Metabolic dysfunction associated steatotic liver disease (MASLD), closely linked to excessive lipogenesis, induces chronic liver disease. MASLD often cause other metabolic diseases, such as cardiovascular disease, diabetes and obesity. However, the mechanism of N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) mRNA modification in lipogenesis of MASLD has not been fully elucidated. This study investigated the role of NAT10 in lipogenesis targeting mRNA ac4C modification. Methods The expression of NAT10 in mouse liver was assessed after a 12-week high-fat diet. In addition, the expression of NAT10 also was detected after AML12 hepatocytes cells were treated with 150 µmol/L palmitic acid (PA). The ac4C mRNA modification was performed by dot blotting. Oil red O staining and the mRNA expression of Srebf1, Acaca and Fasn were used to assess lipogenesis in AML12 cells with NAT10 overexpression or knockdown. acRIP-PCR and NAT10 RIP-PCR were used to verify the Srebf1 and Scap mRNA ac4C modification by NAT10. Furthermore, the liver lipogenesis was evaluated by AAV-mediated target knockdown of NAT10 in mouse liver and treating a specific inhibitor, Remodelin. Results This study revealed that NAT10 is significantly upregulated in liver lipogenesis after a 12-week high-fat diet. NAT10 and ac4C mRNA modification were also drastically increased in AML12 cells after treated with 150 µmol/L PA. Silencing of NAT10 notably inhibited the lipogenesis in AML12 cells and AAV-mediated target knockdown of NAT10 in mouse liver. The acRIP-PCR and NAT10-RIP-PCR revealed that NAT10 ac4C modified Srebf1 and Scap mRNA, the critical modulator of liver lipogenesis, to regulate liver lipogenesis. Besides, Remodelin strongly inhibited liver lipogenesis, including liver TG, serum ALT, AST, TG and TC level and glucose metabolism. Conclusions NAT10 mediates ac4C modification of Srebf1 and Scap mRNA, thereby affecting lipogenesis in the liver. This study provided a new target for the treatment of MASLD.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje