Effect of Reinforcement on Tensile Characteristics in AA 5052 with ZrC and Fly Ash-Based Composites

Autor: K. Mallikarjuna, M. K. Harikeerthan, B. S. Shubhalakshmi, K. S. Vinay Kumar, Ravindra Pratap Singh, Maddali Srikanth, Y. Krishna Srinivasa Subba Rao, Suresh Kumar, Aggegnenu Shara Shata
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Advances in Materials Science and Engineering, Vol 2022 (2022)
Druh dokumentu: article
ISSN: 1687-8442
DOI: 10.1155/2022/7070304
Popis: Aluminum Alloy 5052/ZrC/fly ash composites’ tensile properties are changed by the addition of reinforcements and thermal exposure, according to this study. The precipitation hardening of samples manufactured with various weight percent of fly ash and zirconium carbide was employed to improve the properties under thermal circumstances. The tensile properties of reinforced and heat-treated specimens were studied in a series of scientifically-designed experiments. Tensile strength and yield strength rise up to 200°C, after which they begin to decrease slightly (i.e., 250°C) based on the results of the research. Adding reinforcements and exposing the composites to heat increases their elastic modulus which decreases the percentage of El of the composites substantially. Several factors contribute to composites’ increased strength and elastic modulus, the diffusion process, temperatures, and reinforcement composition. It is also possible to manufacture hybridized composite mechanisms for numerous automotive and aviation industries utilizing optimization studies, which interpolate the findings of several sets of parameters to make the process easier.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje