Autor: |
Xicheng Tan, Song Guo, Liping Di, Meixia Deng, Fang Huang, Xinyue Ye, Ziheng Sun, Weishu Gong, Zongyao Sha, Shaoming Pan |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Remote Sensing, Vol 9, Iss 4, p 382 (2017) |
Druh dokumentu: |
article |
ISSN: |
2072-4292 |
DOI: |
10.3390/rs9040382 |
Popis: |
To optimize the efficiency of the geospatial service in the flood response decision making system, a Parallel Agent-as-a-Service (P-AaaS) method is proposed and implemented in the cloud. The prototype system and comparisons demonstrate the advantages of our approach over existing methods. The P-AaaS method includes both parallel architecture and a mechanism for adjusting the computational resources—the parallel geocomputing mechanism of the P-AaaS method used to execute a geospatial service and the execution algorithm of the P-AaaS based geospatial service chain, respectively. The P-AaaS based method has the following merits: (1) it inherits the advantages of the AaaS-based method (i.e., avoiding transfer of large volumes of remote sensing data or raster terrain data, agent migration, and intelligent conversion into services to improve domain expert collaboration); (2) it optimizes the low performance and the concurrent geoprocessing capability of the AaaS-based method, which is critical for special applications (e.g., highly concurrent applications and emergency response applications); and (3) it adjusts the computing resources dynamically according to the number and the performance requirements of concurrent requests, which allows the geospatial service chain to support a large number of concurrent requests by scaling up the cloud-based clusters in use and optimizes computing resources and costs by reducing the number of virtual machines (VMs) when the number of requests decreases. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|