Autor: |
Efrain Riveros-Perez, Javier Jose Polania-Gutierrez, Bibiana Avella-Molano |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
BMC Pregnancy and Childbirth, Vol 23, Iss 1, Pp 1-7 (2023) |
Druh dokumentu: |
article |
ISSN: |
1471-2393 |
DOI: |
10.1186/s12884-023-05632-3 |
Popis: |
Abstract Background Neuraxial labor analgesia has been associated with fetal heart rate changes. Fetal bradycardia is multifactorial, and predicting it poses a significant challenge to clinicians. Machine learning algorithms may assist the clinician to predict fetal bradycardia and identify predictors associated with its presentation. Methods A retrospective analysis of 1077 healthy laboring parturients receiving neuraxial analgesia was conducted. We compared a principal components regression model with tree-based random forest, ridge regression, multiple regression, a general additive model, and elastic net in terms of prediction accuracy and interpretability for inference purposes. Results Multiple regression identified combined spinal-epidural (CSE) (p = 0.02), interaction between CSE and dose of phenylephrine (p |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|