Fetal heart rate changes and labor neuraxial analgesia: a machine learning approach

Autor: Efrain Riveros-Perez, Javier Jose Polania-Gutierrez, Bibiana Avella-Molano
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: BMC Pregnancy and Childbirth, Vol 23, Iss 1, Pp 1-7 (2023)
Druh dokumentu: article
ISSN: 1471-2393
DOI: 10.1186/s12884-023-05632-3
Popis: Abstract Background Neuraxial labor analgesia has been associated with fetal heart rate changes. Fetal bradycardia is multifactorial, and predicting it poses a significant challenge to clinicians. Machine learning algorithms may assist the clinician to predict fetal bradycardia and identify predictors associated with its presentation. Methods A retrospective analysis of 1077 healthy laboring parturients receiving neuraxial analgesia was conducted. We compared a principal components regression model with tree-based random forest, ridge regression, multiple regression, a general additive model, and elastic net in terms of prediction accuracy and interpretability for inference purposes. Results Multiple regression identified combined spinal-epidural (CSE) (p = 0.02), interaction between CSE and dose of phenylephrine (p
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje