Equivalent characterization of resilient rotation symmetric functions with q number of variables over GF(p)

Autor: Jiao DU, Shan-qi PANG, Qiao-yan WEN, GJie ZHAN
Jazyk: čínština
Rok vydání: 2014
Předmět:
Zdroj: Tongxin xuebao, Vol 35, Pp 179-183 (2014)
Druh dokumentu: article
ISSN: 1000-436X
DOI: 10.3969/j.issn.1000-436x.2014.08.022
Popis: Baesd on the property of the l-value support tables of the resilient rotation symmetric functions (RSF) with q number of variables, an equivalent characterization on the resilient RSF with q number of variables is derived. It is proved that construction of the resilient RSF with q number of variables are equivalent to solve an equation system. At last, the count of resilient RSF with q number of variables are represented by using all the solutions of the equation system. Key words: rotation symmetric functions; l-value support table; orthogonal arrays; resilient functions
Databáze: Directory of Open Access Journals