Autor: |
Maria-del-Carmen Silva-Lucero, Jared Rivera-Osorio, Laura Gómez-Virgilio, Gustavo Lopez-Toledo, José Luna-Muñoz, Francisco Montiel-Sosa, Luis O. Soto-Rojas, Mar Pacheco-Herrero, Maria-del-Carmen Cardenas-Aguayo |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Diagnostics, Vol 12, Iss 5, p 1165 (2022) |
Druh dokumentu: |
article |
ISSN: |
2075-4418 |
DOI: |
10.3390/diagnostics12051165 |
Popis: |
Alzheimer’s disease (AD) is neurodegeneration that accounts for 60–70% of dementia cases. Symptoms begin with mild memory difficulties and evolve towards cognitive impairment. The underlying risk factors remain primarily unclear for this heterogeneous disorder. Bioinformatics is a relevant research tool that allows for identifying several pathways related to AD. Open-access databases of RNA microarrays from the peripheral blood and brain of AD patients were analyzed after background correction and data normalization; the Limma package was used for differential expression analysis (DEA) through statistical R programming language. Data were corrected with the Benjamini and Hochberg approach, and genes with p-values equal to or less than 0.05 were considered to be significant. The direction of the change in gene expression was determined by its variation in the log2-fold change between healthy controls and patients. We performed the functional enrichment analysis of GO using goana and topGO-Limma. The functional enrichment analysis of DEGs showed upregulated (UR) pathways: behavior, nervous systems process, postsynapses, enzyme binding; downregulated (DR) were cellular component organization, RNA metabolic process, and signal transduction. Lastly, the intersection of DEGs in the three databases showed eight shared genes between brain and blood, with potential use as AD biomarkers for blood tests. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|