Approximation properties of multivariate exponential sampling series
Autor: | S. Kurşun, M. Turgay, O. Alagöz, T. Acar |
---|---|
Jazyk: | English<br />Ukrainian |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Karpatsʹkì Matematičnì Publìkacìï, Vol 13, Iss 3, Pp 666-675 (2021) |
Druh dokumentu: | article |
ISSN: | 2075-9827 2313-0210 |
DOI: | 10.15330/cmp.13.3.666-675 |
Popis: | In this paper, we generalize the family of exponential sampling series for functions of $n$ variables and study their pointwise and uniform convergence as well as the rate of convergence for the functions belonging to space of $\log$-uniformly continuous functions. Furthermore, we state and prove the generalized Mellin-Taylor's expansion of multivariate functions. Using this expansion we establish pointwise asymptotic behaviour of the series by means of Voronovskaja type theorem. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |