Autor: |
Xiaoxun Zhu, Baoping Liu, Zhentao Li, Jiawei Lin, Xiaoxia Gao |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Sensors, Vol 22, Iss 10, p 3693 (2022) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s22103693 |
Popis: |
CNN extracts the signal characteristics layer by layer through the local perception of convolution kernel, but the rotation speed and sampling frequency of the vibration signal of rotating equipment are not the same. Extracting different signal features with a fixed convolution kernel will affect the local feature perception and ultimately affect the learning effect and recognition accuracy. In order to solve this problem, the matching between the size of convolution kernel and the signal (rotation speed, sampling frequency) was optimized with the matching relation obtained. Through the study of this paper, the ability of extracting vibration features of CNN was improved, and the accuracy of vibration state recognition was finally improved to 98%. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|