Autor: |
Xing-Liang Xu, Xu-Guang Zheng, Isao Watanabe |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Materials, Vol 12, Iss 13, p 2135 (2019) |
Druh dokumentu: |
article |
ISSN: |
1996-1944 |
DOI: |
10.3390/ma12132135 |
Popis: |
The temperature-dependent dynamics of the hydrogen/deuterium atoms in geometrically frustrated magnets Co2(OH)3Br and its deuterated form Co2(OD)3Br were investigated by muon spin relaxation (μSR). The deuterium atoms in Co2(OD)3Br were found to be rapidly fluctuating at high temperatures, which should be arising as a quantum atomic effect due to the small mass of deuterium, then they drastically slowed down toward Tc = 250 K where a broad anomaly appeared in the dielectric response, and finally became quasi-static at around 180 K. Meanwhile, the hydrogen atoms in Co2(OH)3Br also exhibited a two-step slowing at ~240 K and ~180 K, respectively. The revealed properties in Co2(OH)3Br/Co2(OD)3Br are reminiscent of relaxor-type ferroelectrics. The present study suggested the effectiveness of the μSR technique on revealing the hydrogen/deuterium (H/D) dynamics in Co2(OH)3Br/Co2(OD)3Br. Furthermore, magnetic coupling was found to be existing at high temperatures in this system. This work provides clear evidence to the mechanism of ferroelectric responses in the hydroxyl salts, i.e., the slowing of protons (deuterium ions) is directly related to the newly revealed ferroelectricity. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|