An Augmented UCAL Model for Predicting Trajectory and Location

Autor: Kadri Nesrine, Ellouze Ameni, Turki Sameh, Ksantini Mohamed
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Cybernetics and Information Technologies, Vol 22, Iss 2, Pp 114-124 (2022)
Druh dokumentu: article
ISSN: 1314-4081
DOI: 10.2478/cait-2022-0020
Popis: Predicting human mobility between locations plays an important role in a wide range of applications and services such as transportation, economics, sociology and other fields. Mobility prediction can be implemented through various machine learning algorithms that can predict the future trajectory of a user relying on the current trajectory and time, learning from historical sequences of locations previously visited by the user. But, it is not easy to capture complex patterns from the long historical sequences of locations. Inspired by the methods of the Convolutional Neural Network (CNN), we propose an augmented Union ConvAttention-LSTM (UCAL) model. The UCAL consists of the 1D CNN that allows capturing locations from historical trajectories and the augmented proposed model that contains an Attention technique with a Long Short-Term Memory (LSTM) in order to capture patterns from current trajectories. The experimental results prove the effectiveness of our proposed methodology that outperforms the existing models.
Databáze: Directory of Open Access Journals