Adaptive visual target tracking algorithm based on classified-patch kernel particle filter

Autor: Guangnan Zhang, Jinlong Yang, Weixing Wang, Yu Hen Hu, Jianjun Liu
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: EURASIP Journal on Image and Video Processing, Vol 2019, Iss 1, Pp 1-12 (2019)
Druh dokumentu: article
ISSN: 1687-5281
DOI: 10.1186/s13640-019-0411-1
Popis: Abstract We propose a high-performance visual target tracking (VTT) algorithm based on classified-patch kernel particle filter (CKPF). Novel features of this VTT algorithm include sparse representations of the target template using the label-consistent K-singular value decomposition (LC-KSVD) algorithm; Gaussian kernel density particle filter to facilitate candidate template generation and likelihood matching score evaluation; and an occlusion detection method using sparse coefficient histogram (ASCH). Experimental results validate superior performance of the proposed tracking algorithm over state-of-the-art visual target tracking algorithms in scenarios that include occlusion, background clutter, illumination change, target rotation, and scale changes.
Databáze: Directory of Open Access Journals