Dynamic Task Offloading for Cloud-Assisted Vehicular Edge Computing Networks: A Non-Cooperative Game Theoretic Approach
Autor: | Md. Delowar Hossain, Tangina Sultana, Md. Alamgir Hossain, Md. Abu Layek, Md. Imtiaz Hossain, Phoo Pyae Sone, Ga-Won Lee, Eui-Nam Huh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Sensors, Vol 22, Iss 10, p 3678 (2022) |
Druh dokumentu: | article |
ISSN: | 22103678 1424-8220 |
DOI: | 10.3390/s22103678 |
Popis: | Vehicular edge computing (VEC) is one of the prominent ideas to enhance the computation and storage capabilities of vehicular networks (VNs) through task offloading. In VEC, the resource-constrained vehicles offload their computing tasks to the local road-side units (RSUs) for rapid computation. However, due to the high mobility of vehicles and the overloaded problem, VEC experiences a great deal of challenges when determining a location for processing the offloaded task in real time. As a result, this degrades the quality of vehicular performance. Therefore, to deal with these above-mentioned challenges, an efficient dynamic task offloading approach based on a non-cooperative game (NGTO) is proposed in this study. In the NGTO approach, each vehicle can make its own strategy on whether a task is offloaded to a multi-access edge computing (MEC) server or a cloud server to maximize its benefits. Our proposed strategy can dynamically adjust the task-offloading probability to acquire the maximum utility for each vehicle. However, we used a best response offloading strategy algorithm for the task-offloading game in order to achieve a unique and stable equilibrium. Numerous simulation experiments affirm that our proposed scheme fulfills the performance guarantees and can reduce the response time and task-failure rate by almost 47.6% and 54.6%, respectively, when compared with the local RSU computing (LRC) scheme. Moreover, the reduced rates are approximately 32.6% and 39.7%, respectively, when compared with a random offloading scheme, and approximately 26.5% and 28.4%, respectively, when compared with a collaborative offloading scheme. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |