Twin minus domination numbers in directed graphs
Autor: | M. Atapour, A. Khodkar |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Communications in Combinatorics and Optimization, Vol 1, Iss 2, Pp 149-164 (2016) |
Druh dokumentu: | article |
ISSN: | 2538-2128 2538-2136 |
DOI: | 10.22049/CCO.2016.13575 |
Popis: | Let $D=(V,A)$ be a finite simple directed graph. A function $f:V\longrightarrow \{-1,0,1\}$ is called a twin minus dominating function if $f(N^-[v])\ge 1$ and $f(N^+[v])\ge 1$ for each vertex $v\in V$. The twin minus domination number of $D$ is $\gamma_{-}^*(D)=\min\{w(f)\mid f \mbox{ is a twin minus dominating function of } D\}$. In this paper, we initiate the study of twin minus domination numbers in digraphs and present some lower bounds for $\gamma_{-}^*(D)$ in terms of the order, size and maximum and minimum in-degrees and out-degrees. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |