Autor: |
Ralph Blumenhagen, Christian Kneißl, Chuying Wang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Journal of High Energy Physics, Vol 2023, Iss 5, Pp 1-33 (2023) |
Druh dokumentu: |
article |
ISSN: |
1029-8479 |
DOI: |
10.1007/JHEP05(2023)123 |
Popis: |
Abstract We analyze finite size solutions for a generalized D-dimensional Dudas-Mourad (DM) model featuring dynamical cobordism with neutral and charged end-of-the-world (ETW) defect branes. Confirming a dynamical version of the Cobordism Conjecture, we explicitly construct non-isotropic solutions for the latter codimension one branes and show the appearance of a lower bound δ ≥ 2 D − 1 / D − 2 $$ \delta \ge 2\sqrt{\left(D-1\right)/\left(D-2\right)} $$ for the critical exponent in the scaling behavior of the distance and the curvature close to the wall. This allows us to make a connection to the (sharpened) Swampland Distance Conjecture and the (Anti-) de Sitter Distance Conjecture. Moreover, BPS orientifold planes appear as special cases in our analysis and the whole picture is consistent with dimensional reduction from ten to D dimensions. An analogous analysis is performed for a generalized Blumenhagen-Font (BF) model featuring neutral codimension two ETW-branes where the same lower bound for the scaling parameter δ arises. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|