A Stochastic Lomax Diffusion Process: Statistical Inference and Application

Autor: Ahmed Nafidi, Ilyasse Makroz, Ramón Gutiérrez Sánchez
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Mathematics, Vol 9, Iss 1, p 100 (2021)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math9010100
Popis: In this paper, we discuss a new stochastic diffusion process in which the trend function is proportional to the Lomax density function. This distribution arises naturally in the studies of the frequency of extremely rare events. We first consider the probabilistic characteristics of the proposed model, including its analytic expression as the unique solution to a stochastic differential equation, the transition probability density function together with the conditional and unconditional trend functions. Then, we present a method to address the problem of parameter estimation using maximum likelihood with discrete sampling. This estimation requires the solution of a non-linear equation, which is achieved via the simulated annealing method. Finally, we apply the proposed model to a real-world example concerning adolescent fertility rate in Morocco.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje