Ground state sign-changing solutions for a class of quasilinear Schrödinger equations

Autor: Zhu Wenjie, Chen Chunfang
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Open Mathematics, Vol 19, Iss 1, Pp 1746-1754 (2021)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2021-0134
Popis: In this paper, we consider the following quasilinear Schrödinger equation: −Δu+V(x)u+κ2Δ(u2)u=K(x)f(u),x∈RN,-\Delta u+V\left(x)u+\frac{\kappa }{2}\Delta \left({u}^{2})u=K\left(x)f\left(u),\hspace{1.0em}x\in {{\mathbb{R}}}^{N}, where N≥3N\ge 3, κ>0\kappa \gt 0, f∈C(R,R)f\in {\mathcal{C}}\left({\mathbb{R}},{\mathbb{R}}), V(x)V\left(x) and K(x)K\left(x) are positive continuous potentials. Under given conditions, by changing variables and truncation argument, the energy of ground state solutions of the Nehari type is achieved. We also prove the existence of ground state sign-changing solutions for the aforementioned equation. Our results are the generalization work of M. B. Yang, C. A. Santos, and J. Z. Zhou, Least action nodal solution for a quasilinear defocusing Schrödinger equation with supercritical nonlinearity, Commun. Contemp. Math. 21 (2019), no. 5, 1850026, https://doi.org/10.1142/S0219199718500268.
Databáze: Directory of Open Access Journals