Autor: |
Yi Jiang, Dong Chen, Xin Chen, Tangyi Li, Guo-Wei Wei, Feng Pan |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
npj Computational Materials, Vol 7, Iss 1, Pp 1-8 (2021) |
Druh dokumentu: |
article |
ISSN: |
2057-3960 |
DOI: |
10.1038/s41524-021-00493-w |
Popis: |
Abstract Accurate theoretical predictions of desired properties of materials play an important role in materials research and development. Machine learning (ML) can accelerate the materials design by building a model from input data. For complex datasets, such as those of crystalline compounds, a vital issue is how to construct low-dimensional representations for input crystal structures with chemical insights. In this work, we introduce an algebraic topology-based method, called atom-specific persistent homology (ASPH), as a unique representation of crystal structures. The ASPH can capture both pairwise and many-body interactions and reveal the topology-property relationship of a group of atoms at various scales. Combined with composition-based attributes, ASPH-based ML model provides a highly accurate prediction of the formation energy calculated by density functional theory (DFT). After training with more than 30,000 different structure types and compositions, our model achieves a mean absolute error of 61 meV/atom in cross-validation, which outperforms previous work such as Voronoi tessellations and Coulomb matrix method using the same ML algorithm and datasets. Our results indicate that the proposed topology-based method provides a powerful computational tool for predicting materials properties compared to previous works. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|