Autor: |
Anna Khimchenko, Georg Schulz, Peter Thalmann, Bert Müller |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
APL Bioengineering, Vol 2, Iss 1, Pp 016106-016106-9 (2018) |
Druh dokumentu: |
article |
ISSN: |
2473-2877 |
DOI: |
10.1063/1.5022184 |
Popis: |
Visualizing the internal architecture of large soft tissue specimens within the laboratory environment in a label-free manner is challenging, as the conventional absorption-contrast tomography yields a poor contrast. In this communication, we present the integration of an X-ray double-grating interferometer (XDGI) into an advanced, commercially available micro computed tomography system nanotom® m with a transmission X-ray source and a micrometer-sized focal spot. The performance of the interferometer is demonstrated by comparing the registered three-dimensional images of a human knee joint sample in phase- and conventional absorption-contrast modes. XDGI provides enough contrast (1.094 ± 0.152) to identify the cartilage layer, which is not recognized in the conventional mode (0.287 ± 0.003). Consequently, the two modes are complementary, as the present XDGI set-up only reaches a spatial resolution of (73 ± 6) μm, whereas the true micrometer resolution in the absorption-contrast mode has been proven. By providing complimentary information, XDGI is especially a supportive quantitative method for imaging soft tissues and visualizing weak X-ray absorbing species in the direct neighborhood of stronger absorbing components at the microscopic level. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|