Time-Fractional Diffusion-Wave Equation with Mass Absorption in a Sphere under Harmonic Impact

Autor: Bohdan Datsko, Igor Podlubny, Yuriy Povstenko
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Mathematics, Vol 7, Iss 5, p 433 (2019)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math7050433
Popis: The time-fractional diffusion equation with mass absorption in a sphere is considered under harmonic impact on the surface of a sphere. The Caputo time-fractional derivative is used. The Laplace transform with respect to time and the finite sin-Fourier transform with respect to the spatial coordinate are employed. A graphical representation of the obtained analytical solution for different sets of the parameters including the order of fractional derivative is given.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje