Autor: |
Mohammed Ali, Oqlah Al-Refai |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 7, Iss 10, p 886 (2019) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math7100886 |
Popis: |
In this article, the boundedness of the generalized parametric Marcinkiewicz integral operators M Ω , ϕ , h , ρ ( r ) is considered. Under the condition that Ω is a function in L q ( S n - 1 ) with q ∈ ( 1 , 2 ] , appropriate estimates of the aforementioned operators from Triebel–Lizorkin spaces to L p spaces are obtained. By these estimates and an extrapolation argument, we establish the boundedness of such operators when the kernel function Ω belongs to the block space B q 0 , ν - 1 ( S n - 1 ) or in the space L ( l o g L ) ν ( S n - 1 ) . Our results represent improvements and extensions of some known results in generalized parametric Marcinkiewicz integrals. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|