Artificial intelligence for skin cancer detection and classification for clinical environment: a systematic review

Autor: Brunna C. R. S. Furriel, Bruno D. Oliveira, Renata Prôa, Joselisa Q. Paiva, Rafael M. Loureiro, Wesley P. Calixto, Márcio R. C. Reis, Mara Giavina-Bianchi
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Frontiers in Medicine, Vol 10 (2024)
Druh dokumentu: article
ISSN: 2296-858X
DOI: 10.3389/fmed.2023.1305954
Popis: BackgroundSkin cancer is one of the most common forms worldwide, with a significant increase in incidence over the last few decades. Early and accurate detection of this type of cancer can result in better prognoses and less invasive treatments for patients. With advances in Artificial Intelligence (AI), tools have emerged that can facilitate diagnosis and classify dermatological images, complementing traditional clinical assessments and being applicable where there is a shortage of specialists. Its adoption requires analysis of efficacy, safety, and ethical considerations, as well as considering the genetic and ethnic diversity of patients.ObjectiveThe systematic review aims to examine research on the detection, classification, and assessment of skin cancer images in clinical settings.MethodsWe conducted a systematic literature search on PubMed, Scopus, Embase, and Web of Science, encompassing studies published until April 4th, 2023. Study selection, data extraction, and critical appraisal were carried out by two independent reviewers. Results were subsequently presented through a narrative synthesis.ResultsThrough the search, 760 studies were identified in four databases, from which only 18 studies were selected, focusing on developing, implementing, and validating systems to detect, diagnose, and classify skin cancer in clinical settings. This review covers descriptive analysis, data scenarios, data processing and techniques, study results and perspectives, and physician diversity, accessibility, and participation.ConclusionThe application of artificial intelligence in dermatology has the potential to revolutionize early detection of skin cancer. However, it is imperative to validate and collaborate with healthcare professionals to ensure its clinical effectiveness and safety.
Databáze: Directory of Open Access Journals