Autor: |
Michael Gil' |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Opuscula Mathematica, Vol 41, Iss 3, Pp 395-412 (2021) |
Druh dokumentu: |
article |
ISSN: |
1232-9274 |
DOI: |
10.7494/OpMath.2021.41.3.395 |
Popis: |
Let \(A\) and \(\tilde{A}\) be bounded operators in a Hilbert space. We consider the following problem: let the spectrum of \(A\) lie in some strip. In what strip the spectrum of \(\tilde{A}\) lies if \(A\) and \(\tilde{A}\) are "close"? Applications of the obtained results to integral operators and matrices are also discussed. In addition, we apply our perturbation results to approximate the spectral strip of a Hilbert-Schmidt operator by the spectral strips of finite matrices. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|