Spectrum localization of a perturbed operator in a strip and applications

Autor: Michael Gil'
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Opuscula Mathematica, Vol 41, Iss 3, Pp 395-412 (2021)
Druh dokumentu: article
ISSN: 1232-9274
DOI: 10.7494/OpMath.2021.41.3.395
Popis: Let \(A\) and \(\tilde{A}\) be bounded operators in a Hilbert space. We consider the following problem: let the spectrum of \(A\) lie in some strip. In what strip the spectrum of \(\tilde{A}\) lies if \(A\) and \(\tilde{A}\) are "close"? Applications of the obtained results to integral operators and matrices are also discussed. In addition, we apply our perturbation results to approximate the spectral strip of a Hilbert-Schmidt operator by the spectral strips of finite matrices.
Databáze: Directory of Open Access Journals