Recognizing VSC DC Cable Fault Types Using Bayesian Functional Data Depth
Autor: | Jerzy Baranowski, Katarzyna Grobler-Dębska, Edyta Kucharska |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Energies, Vol 14, Iss 18, p 5893 (2021) |
Druh dokumentu: | article |
ISSN: | 1996-1073 53165268 |
DOI: | 10.3390/en14185893 |
Popis: | Diagnostics of power and energy systems is obviously an important matter. In this paper we present a contribution of using new methodology for the purpose of signal type recognition (for example, faulty/healthy or different types of faults). Our approach uses Bayesian functional data analysis with data depths distributions to detect differing signals. We present our approach for discrimination of pole-to-pole and pole-to-ground short circuits in VSC DC cables. We provide a detailed case study with Monte Carlo analysis. Our results show potential for applications in diagnostics under uncertainty. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |