Recognizing VSC DC Cable Fault Types Using Bayesian Functional Data Depth

Autor: Jerzy Baranowski, Katarzyna Grobler-Dębska, Edyta Kucharska
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Energies, Vol 14, Iss 18, p 5893 (2021)
Druh dokumentu: article
ISSN: 1996-1073
53165268
DOI: 10.3390/en14185893
Popis: Diagnostics of power and energy systems is obviously an important matter. In this paper we present a contribution of using new methodology for the purpose of signal type recognition (for example, faulty/healthy or different types of faults). Our approach uses Bayesian functional data analysis with data depths distributions to detect differing signals. We present our approach for discrimination of pole-to-pole and pole-to-ground short circuits in VSC DC cables. We provide a detailed case study with Monte Carlo analysis. Our results show potential for applications in diagnostics under uncertainty.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje