Modelling human navigation and decision dynamics in a first-person herding task

Autor: Ayman bin Kamruddin, Hannah Sandison, Gaurav Patil, Mirco Musolesi, Mario di Bernardo, Michael J. Richardson
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Royal Society Open Science, Vol 11, Iss 10 (2024)
Druh dokumentu: article
ISSN: 2054-5703
DOI: 10.1098/rsos.231919
Popis: This study investigated whether dynamical perceptual-motor primitives (DPMPs) could also be used to capture human navigation in a first-person herding task. To achieve this aim, human participants played a first-person herding game, in which they were required to corral virtual cows, called targets, into a specified containment zone. In addition to recording and modelling participants’ movement trajectories during gameplay, participants’ target-selection decisions (i.e. the order in which participants corralled targets) were recorded and modelled. The results revealed that a simple DPMP navigation model could effectively reproduce the movement trajectories of participants and that almost 80% of the participants’ target-selection decisions could be captured by a simple heuristic policy. Importantly, when this policy was coupled to the DPMP navigation model, the resulting system could successfully simulate and predict the behavioural dynamics (movement trajectories and target-selection decisions) of participants in novel multi-target contexts. Implications of the findings for understanding complex human perceptual-motor behaviour and the development of artificial agents for robust human–machine interaction are discussed.
Databáze: Directory of Open Access Journals