The Funk-Hecke formula, harmonic polynomials, and derivatives of radial distributions
Autor: | Ricardo Estrada |
---|---|
Jazyk: | English<br />Portuguese |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Boletim da Sociedade Paranaense de Matemática, Vol 37, Iss 3, Pp 143-157 (2019) |
Druh dokumentu: | article |
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.v37i3.34198 |
Popis: | We give a version of the Funk-Hecke formula that holds with minimal assumptons and apply it to obtain formulas for the distributional derivatives of radial distributions in Rn of the type Yk r j (f (r)) ; where Yk is a harmonic homogeneous polynomial. We show that such derivatives have simpler expressions than those of the form p r (f (r)) for a general polynomial p: |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |