The Funk-Hecke formula, harmonic polynomials, and derivatives of radial distributions

Autor: Ricardo Estrada
Jazyk: English<br />Portuguese
Rok vydání: 2019
Předmět:
Zdroj: Boletim da Sociedade Paranaense de Matemática, Vol 37, Iss 3, Pp 143-157 (2019)
Druh dokumentu: article
ISSN: 0037-8712
2175-1188
DOI: 10.5269/bspm.v37i3.34198
Popis: We give a version of the Funk-Hecke formula that holds with minimal assumptons and apply it to obtain formulas for the distributional derivatives of radial distributions in Rn of the type Yk 􀀀 r j (f (r)) ; where Yk is a harmonic homogeneous polynomial. We show that such derivatives have simpler expressions than those of the form p 􀀀 r (f (r)) for a general polynomial p:
Databáze: Directory of Open Access Journals