Efficient Removal of Hg(II) from Water under Mildly Acidic Conditions with Hierarchical SiO2 Monoliths Functionalized with –SH Groups

Autor: Ireri Segura Gutiérrez, Verónica Hernández Morales, Eric Mauricio Rivera Muñoz, Rufino Nava Mendoza, Ludwig Lagarde Soto, Carmen Leticia Peza Ledesma, Doris Solís Casados, Barbara Pawelec
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Materials, Vol 15, Iss 4, p 1580 (2022)
Druh dokumentu: article
ISSN: 1996-1944
DOI: 10.3390/ma15041580
Popis: In this work, novel adsorbents based on 3D hierarchical silica monoliths functionalized with thiol groups were used for the removal of Hg(II) ions from an acidic aqueous solution (pH 3.5). Silica monoliths were synthesized by using two different pluronic triblock polymers (P123 and F127) to study the effect of porous structure on their sorption capacity. Before and after functionalization by grafting with 3-mercaptopropyltrimethoxysilane (MPTMS), the monoliths were characterized by several techniques, and their Hg(II) removal potential was evaluated in batch experiments at 28 °C and pH 3.5, using different initial concentrations of Hg(II) ions in water (200–500 mg L−1). The thiol groups of the monoliths calcined at 550 °C showed thermal stability up to 300 °C (from TG/DTG). The functionalized monolith synthesized with P123 polymer and polyethylene glycol showed favorable hierarchical macro-mesopores for Hg(II) adsorption. M(P123)–SH exhibited 97% removal of Hg(II) at concentration 200 mg L−1. Its maximum adsorption capacity (12.2 mmol g−1) was two times higher than that of M(F127)–SH, demonstrating that the 3D hierarchical macro-mesoporosity allowing accessibility of Hg(II) to thiol groups favors the physical and chemical adsorption of Hg(II) under slightly acidic conditions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje