Formal Lagrangian Operad

Autor: Alberto S. Cattaneo, Benoit Dherin, Giovanni Felder
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: International Journal of Mathematics and Mathematical Sciences, Vol 2010 (2010)
Druh dokumentu: article
ISSN: 0161-1712
1687-0425
DOI: 10.1155/2010/643605
Popis: Given a symplectic manifold M, we may define an operad structure on the the spaces Ok of the Lagrangian submanifolds of (M¯)k×M via symplectic reduction. If M is also a symplectic groupoid, then its multiplication space is an associative product in this operad. Following this idea, we provide a deformation theory for symplectic groupoids analog to the deformation theory of algebras. It turns out that the semiclassical part of Kontsevich's deformation of C∞(ℝd) is a deformation of the trivial symplectic groupoid structure of T∗ℝd.
Databáze: Directory of Open Access Journals