Formal Lagrangian Operad
Autor: | Alberto S. Cattaneo, Benoit Dherin, Giovanni Felder |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | International Journal of Mathematics and Mathematical Sciences, Vol 2010 (2010) |
Druh dokumentu: | article |
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/2010/643605 |
Popis: | Given a symplectic manifold M, we may define an operad structure on the the spaces Ok of the Lagrangian submanifolds of (M¯)k×M via symplectic reduction. If M is also a symplectic groupoid, then its multiplication space is an associative product in this operad. Following this idea, we provide a deformation theory for symplectic groupoids analog to the deformation theory of algebras. It turns out that the semiclassical part of Kontsevich's deformation of C∞(ℝd) is a deformation of the trivial symplectic groupoid structure of T∗ℝd. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |