Popis: |
Due to the swift development of the Internet of Things (IoT), massive advanced terminals such as sensor nodes have been deployed across diverse applications to sense and acquire surrounding data. Given their limited onboard capabilities, these terminals tend to offload data to servers for further processing. However, terminals cannot transmit data directly in regions with restricted communication infrastructure. With the increasing proliferation of unmanned aerial vehicles (UAVs), they have become instrumental in collecting and transmitting data from the region to servers. Nevertheless, because of the energy constraints and time-consuming nature of data processing by UAVs, it becomes imperative not only to utilize multiple UAVs to traverse a large-scale region and collect data, but also to overcome the substantial challenge posed by the time sensitivity of data information. Therefore, this paper introduces the important indicator Age of Information (AoI) that measures data freshness, and develops an intelligent AoI optimization data processing approach named AODP in a hierarchical cloud–edge architecture. In the proposed AODP, we design a management mechanism through the formation of clusters by terminals and the service associations between terminals and hovering positions (HPs). To further improve collection efficiency of UAVs, an HP clustering strategy is developed to construct the UAV-HP association. Finally, under the consideration of energy supply, time tolerance, and flexible computing modes, a gray wolf optimization algorithm-based multi-objective path planning scheme is proposed, achieving both average and peak AoI minimization. Simulation results demonstrate that the AODP can converge well, guarantee reliable AoI, and exhibit superior performance compared to existing solutions in multiple scenarios. |