Autor: |
Yulia Maximenko, Yueqing Chang, Guannan Chen, Mark R. Hirsbrunner, Waclaw Swiech, Taylor L. Hughes, Lucas K. Wagner, Vidya Madhavan |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
npj Quantum Materials, Vol 7, Iss 1, Pp 1-6 (2022) |
Druh dokumentu: |
article |
ISSN: |
2397-4648 |
DOI: |
10.1038/s41535-022-00433-x |
Popis: |
Abstract Monolayer 1 T′-WTe2 is a quantum spin Hall insulator with a gapped 2D-bulk and gapless helical edge states persisting to temperatures ~100 K. Despite the far-ranging interest, the magnitude of the bulk gap, the effect of gating on the 2D-band structure, as well the role interactions are not established. In this work we use STM spectroscopy to measure the intrinsic bulk gap of monolayer 1 T′-WTe2 and show that gate induced electric fields cause large changes of the gap magnitude. Our first-principles DFT-derived tight-binding model reveal that a combination of spatial localization of the conduction and valance bands and Rashba-like spin-orbit coupling leads to a gating induced spin-splitting of the 2D-bulk bands in the tens of meV, thereby reducing the band gap. Our work explains the large sensitivity of the band structure to electric fields and suggests a new avenue for realizing proximity induced non-trivial superconductivity in monolayer 1 T′-WTe2. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|