High interspecific variability in ice nucleation activity suggests pollen ice nucleators are incidental
Autor: | N. L. H. Kinney, C. A. Hepburn, M. I. Gibson, D. Ballesteros, T. F. Whale |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Biogeosciences, Vol 21, Pp 3201-3214 (2024) |
Druh dokumentu: | article |
ISSN: | 1726-4170 1726-4189 |
DOI: | 10.5194/bg-21-3201-2024 |
Popis: | Ice-nucleating macromolecules (INMs) produced by plant pollen can nucleate ice at warm temperatures and may play an important role in weather- and climate-relevant cloud glaciation. INMs have also proved useful for mammalian cell and tissue model cryopreservation. The high ice nucleation (IN) activity of some INMs indicates an underlying biological function, either freezing tolerance or bioprecipitation-mediated dispersal. Here, using the largest study of pollen ice nucleation to date, we show that phylogenetic proximity, spermatophyte subdivision, primary growth biome, pollination season, primary pollination method, desiccation tolerance and native growth elevation do not account for the IN activity of INMs released from different plant species' pollen. The results suggest that these macromolecules are produced by plants for a purpose unrelated to ice nucleation and have an incidental ability to nucleate ice. This ability may have been adapted by some species for specific biological purposes, producing exceptional ice nucleators. Pollen INMs may be more active, widespread in nature, and diverse than previously thought. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |