Autor: |
Ylenia Longo, Sara Moreno Mascaraque, Giuseppe Andreacchio, Julia Werner, Ichiro Katahira, Elena De Marchi, Anna Pegoraro, Robert Jan Lebbink, Karl Köhrer, Patrick Petzsch, Ronny Tao, Francesco Di Virgilio, Elena Adinolfi, Ingo Drexler |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Frontiers in Immunology, Vol 15 (2024) |
Druh dokumentu: |
article |
ISSN: |
1664-3224 |
DOI: |
10.3389/fimmu.2024.1360140 |
Popis: |
IntroductionModified Vaccinia Virus Ankara (MVA) is a safe vaccine vector inducing long- lasting and potent immune responses. MVA-mediated CD8+T cell responses are optimally induced, if both, direct- and cross-presentation of viral or recombinant antigens by dendritic cells are contributing.MethodsTo improve the adaptive immune responses, we investigated the role of the purinergic receptor P2X7 (P2RX7) in MVA-infected feeder cells as a modulator of cross-presentation by non-infected dendritic cells. The infected feeder cells serve as source of antigen and provide signals that help to attract dendritic cells for antigen take up and to license these cells for cross-presentation.ResultsWe demonstrate that presence of an active P2RX7 in major histocompatibility complex (MHC) class I (MHCI) mismatched feeder cells significantly enhanced MVA-mediated antigen cross-presentation. This was partly regulated by P2RX7-specific processes, such as the increased availability of extracellular particles as well as the altered cellular energy metabolism by mitochondria in the feeder cells. Furthermore, functional P2RX7 in feeder cells resulted in a delayed but also prolonged antigen expression after infection. DiscussionWe conclude that a combination of the above mentioned P2RX7-depending processes leads to significantly increased T cell activation via cross- presentation of MVA-derived antigens. To this day, P2RX7 has been mostly investigated in regards to neuroinflammatory diseases and cancer progression. However, we report for the first time the crucial role of P2RX7 for antigen- specific T cell immunity in a viral infection model. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|