Autor: |
Rajeswari Balasubramaniam, Christopher S. Ruf |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 17, Pp 2336-2346 (2024) |
Druh dokumentu: |
article |
ISSN: |
2151-1535 |
DOI: |
10.1109/JSTARS.2023.3344371 |
Popis: |
A parametric error model is developed to represent the uncertainty in retrieval of hurricane force wind speed by a spaceborne GNSS-R instrument. The functional form of the model is constructed based on a bottom–up consideration of the primary contributing sources of uncertainty. Scaling parameters in the model are tuned in a top–down manner using a large population of wind speed retrievals by the CYGNSS satellite, which are colocated in space and time with HWRF reanalysis hurricane winds in the North Atlantic during 2018–2022. The root-mean-squared difference between CYGNSS and HWRF winds is found to depend on a number of variables, two of which are wind speed and receive antenna gain. The parametrized error model represents these dependencies. The model can be used as a design tool to predict expected performance as a function of instrument design. In particular, the model predicts the antenna gain required to achieve a particular level of wind speed uncertainty at a particular wind speed. A case study is considered in which a receive antenna gain of at least 20 dBi is found to be required to reliably distinguish between a Category 4 and Category 5 hurricane. This has implications for the optimal design of a future GNSS-R instrument intended for hurricane observations. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|