Autor: |
Paola Stolfi, Mauro Bernardi, Davide Vergni |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Financial Innovation, Vol 8, Iss 1, Pp 1-25 (2022) |
Druh dokumentu: |
article |
ISSN: |
2199-4730 |
DOI: |
10.1186/s40854-022-00355-4 |
Popis: |
Abstract Most financial signals show time dependency that, combined with noisy and extreme events, poses serious problems in the parameter estimations of statistical models. Moreover, when addressing asset pricing, portfolio selection, and investment strategies, accurate estimates of the relationship among assets are as necessary as are delicate in a time-dependent context. In this regard, fundamental tools that increasingly attract research interests are precision matrix and graphical models, which are able to obtain insights into the joint evolution of financial quantities. In this paper, we present a robust divergence estimator for a time-varying precision matrix that can manage both the extreme events and time-dependency that affect financial time series. Furthermore, we provide an algorithm to handle parameter estimations that uses the “maximization–minimization” approach. We apply the methodology to synthetic data to test its performances. Then, we consider the cryptocurrency market as a real data application, given its remarkable suitability for the proposed method because of its volatile and unregulated nature. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|