On the energy functional for nonlinear stability of the classic Bénard problem

Autor: Lanxi Xu
Jazyk: English<br />French<br />Italian
Rok vydání: 2006
Předmět:
Zdroj: Le Matematiche, Vol 61, Iss 2, Pp 385-394 (2006)
Druh dokumentu: article
ISSN: 0373-3505
2037-5298
Popis: Nonlinear stability of motionless state of the classical Bénard problem in case of stress-free boundaries is studied for 2-dimensional disturbances, by the Liapunov’s second method. For Rayleigh number smaller than 27π^4 /4 the motionless state is proved to be unconditionally and exponentially stable with respect to a new Liapunov function which is essentially stronger than the kinetic energy.
Databáze: Directory of Open Access Journals