On the energy functional for nonlinear stability of the classic Bénard problem
Autor: | Lanxi Xu |
---|---|
Jazyk: | English<br />French<br />Italian |
Rok vydání: | 2006 |
Předmět: | |
Zdroj: | Le Matematiche, Vol 61, Iss 2, Pp 385-394 (2006) |
Druh dokumentu: | article |
ISSN: | 0373-3505 2037-5298 |
Popis: | Nonlinear stability of motionless state of the classical Bénard problem in case of stress-free boundaries is studied for 2-dimensional disturbances, by the Liapunov’s second method. For Rayleigh number smaller than 27π^4 /4 the motionless state is proved to be unconditionally and exponentially stable with respect to a new Liapunov function which is essentially stronger than the kinetic energy. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |