Autor: |
Ashleigh Hansen, Laurie Alston, Sarah E Tulk, L Patrick Schenck, Michael E Grassie, Basmah F Alhassan, Arun Teja Veermalla, Samir Al-Bashir, Fernand-Pierre Gendron, Christophe Altier, Justin A MacDonald, Paul L Beck, Simon A Hirota |
Jazyk: |
angličtina |
Rok vydání: |
2013 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 8, Iss 11, p e81491 (2013) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0081491 |
Popis: |
C. difficile is a Gram-positive spore-forming anaerobic bacterium that is the leading cause of nosocomial diarrhea in the developed world. The pathogenesis of C. difficile infections (CDI) is driven by toxin A (TcdA) and toxin B (TcdB), secreted factors that trigger the release of inflammatory mediators and contribute to disruption of the intestinal epithelial barrier. Neutrophils play a key role in the inflammatory response and the induction of pseudomembranous colitis in CDI. TcdA and TcdB alter cytoskeletal signaling and trigger the release of CXCL8/IL-8, a potent neutrophil chemoattractant, from intestinal epithelial cells; however, little is known about the surface receptor(s) that mediate these events. In the current study, we sought to assess whether toxin-induced CXCL8/IL-8 release and barrier dysfunction are driven by the activation of the P2Y6 receptor following the release of UDP, a danger signal, from intoxicated Caco-2 cells. Caco-2 cells express a functional P2Y6 receptor and release measurable amounts of UDP upon exposure to TcdA/B. Toxin-induced CXCL8/IL-8 production and release were attenuated in the presence of a selective P2Y6 inhibitor (MRS2578). This was associated with inhibition of TcdA/B-induced activation of NFκB. Blockade of the P2Y6 receptor also attenuated toxin-induced barrier dysfunction in polarized Caco-2 cells. Lastly, pretreating mice with the P2Y6 receptor antagonists (MSR2578) attenuated TcdA/B-induced inflammation and intestinal permeability in an intrarectal toxin exposure model. Taken together these data outline a novel role for the P2Y6 receptor in the induction of CXCL8/IL-8 production and barrier dysfunction in response to C. difficile toxin exposure and may provide a new therapeutic target for the treatment of CDI. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|