Macrophage elastase (MMP12) critically contributes to the development of subretinal fibrosis

Autor: Caijiao Yi, Jian Liu, Wen Deng, Chang Luo, Jinyan Qi, Mei Chen, Heping Xu
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Journal of Neuroinflammation, Vol 19, Iss 1, Pp 1-16 (2022)
Druh dokumentu: article
ISSN: 1742-2094
DOI: 10.1186/s12974-022-02433-x
Popis: Abstract Background Macular subretinal fibrosis is the end-stage complication of neovascular age-related macular degeneration (nAMD). We previously developed a mouse model of two-stage laser-induced subretinal fibrosis that mimics closely the dynamic course of macular fibrosis in nAMD patients. This study was aimed to understand the molecular mechanism of subretinal fibrosis. Methods Subretinal fibrosis was induced in C57BL/6J mice using the two-stage laser-induced protocol. Twenty days later, eyes were collected and processed for RNA sequencing (RNA-seq) analysis. DESeq2 was used to determine the differentially expressed genes (DEGs). Gene Ontology (GO) and KEGG were used to analyze the enriched pathways. The expression of the selected DEGs including Mmp12 was verified by qPCR. The expression of MMP12 in subretinal fibrosis of mouse and nAMD donor eyes was examined by immunofluorescence and confocal microscopy. The expression of collagen 1, αSMA and fibronectin and cytokines in bone marrow-derived macrophages from control and subretinal fibrosis mice were examined by qPCR, immunocytochemistry and Luminex multiplex cytokine assay. The MMP12 specific inhibitor MMP408 was used to evaluate the effect of MMP12 on TGFβ-induced macrophage-to-myofibroblast transition (MMT) in vitro and its role in subretinal fibrosis in vivo. Results RNA-seq analysis of RPE-choroid from subretinal fibrosis eyes uncovered 139 DEGs (fold change log2(fc) ≥ 0.5, FDR
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje