EnPredRNN: An Enhanced PredRNN Network for Extending Spatio-Temporal Prediction Period

Autor: Dali Wu, Jiayang Kong, Zhicheng Li, Guojing Zhang, Huaicong Zhang, Jing Liang, Xing Zhang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: IEEE Access, Vol 12, Pp 107631-107644 (2024)
Druh dokumentu: article
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2024.3438992
Popis: We propose the Enhanced Predictive Recurrent Neural Network (EnPredRNN) based on PredRNN to extend the period of spatio-temporal prediction. To better capture global spatial dependencies, we integrate the Self-Attention (SA) module into PredRNN’s basic unit, forming the Enhanced Long Short-Term Memory (EnLSTM). Aiming at the problem that the standard temporal memory state in PredRNN contains insufficient information about inter-frame motion, we propose the Enhanced Temporal Memory (ETM) by aggregating past multi-step temporal memory states. Aiming at the gradient vanishing problem in Recurrent Neural Networks (RNN), the Alleviating Gradient Vanishing (AGV) structure is used to construct the high-speed path that facilitates gradient propagation. Experimental results show that EnPredRNN effectively extends spatio-temporal prediction from ten to thirty time-steps.
Databáze: Directory of Open Access Journals