A Qualitative Investigation of the Solution of the Difference Equation $\Psi_{m+1}=\frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1} \left( \pm1\pm \Psi_{m-3}\Psi_{m-5} \right) }$

Autor: Ibrahim Tarek Fawzi Abdelhamid, Dağıstan Şimşek, Burak Oğul
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Communications in Advanced Mathematical Sciences, Vol 6, Iss 2, Pp 78-85 (2023)
Druh dokumentu: article
ISSN: 2651-4001
DOI: 10.33434/cams.1232982
Popis: We explore the dynamics of adhering to rational difference formula \begin{equation*} \Psi_{m+1}=\frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1} \left( \pm1\pm \Psi_{m-3}\Psi_{m-5} \right) } \quad m \in \mathbb{N}_{0} \end{equation*} where the initials $\Psi_{-5}$, $\Psi_{-4}$, $\Psi_{-3}$,$\Psi_{-2}$, $\Psi_{-1}$, $\Psi_{0}$ are arbitrary nonzero real numbers. Specifically, we examine global asymptotically stability. We also give examples and solution diagrams for certain particular instances.
Databáze: Directory of Open Access Journals