A Robust Approach Assisted by Signal Quality Assessment for Fetal Heart Rate Estimation from Doppler Ultrasound Signal

Autor: Xintong Shi, Natsuho Niida, Kohei Yamamoto, Tomoaki Ohtsuki, Yutaka Matsui, Kazunari Owada
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Sensors, Vol 23, Iss 24, p 9698 (2023)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s23249698
Popis: Fetal heart rate (FHR) monitoring, typically using Doppler ultrasound (DUS) signals, is an important technique for assessing fetal health. In this work, we develop a robust DUS-based FHR estimation approach complemented by DUS signal quality assessment (SQA) based on unsupervised representation learning in response to the drawbacks of previous DUS-based FHR estimation and DUS SQA methods. We improve the existing FHR estimation algorithm based on the autocorrelation function (ACF), which is the most widely used method for estimating FHR from DUS signals. Short-time Fourier transform (STFT) serves as a signal pre-processing technique that allows the extraction of both temporal and spectral information. In addition, we utilize double ACF calculations, employing the first one to determine an appropriate window size and the second one to estimate the FHR within changing windows. This approach enhances the robustness and adaptability of the algorithm. Furthermore, we tackle the challenge of low-quality signals impacting FHR estimation by introducing a DUS SQA method based on unsupervised representation learning. We employ a variational autoencoder (VAE) to train representations of pre-processed fetal DUS data and aggregate them into a signal quality index (SQI) using a self-organizing map (SOM). By incorporating the SQI and Kalman filter (KF), we refine the estimated FHRs, minimizing errors in the estimation process. Experimental results demonstrate that our proposed approach outperforms conventional methods in terms of accuracy and robustness.
Databáze: Directory of Open Access Journals