Endogenous salicylic acid suppresses de novo root regeneration from leaf explants.

Autor: Sorrel Tran, Madalene Ison, Nathália Cássia Ferreira Dias, Maria Andrea Ortega, Yun-Fan Stephanie Chen, Alan Peper, Lanxi Hu, Dawei Xu, Khadijeh Mozaffari, Paul M Severns, Yao Yao, Chung-Jui Tsai, Paulo José Pereira Lima Teixeira, Li Yang
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: PLoS Genetics, Vol 19, Iss 3, p e1010636 (2023)
Druh dokumentu: article
ISSN: 1553-7390
1553-7404
DOI: 10.1371/journal.pgen.1010636
Popis: Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje