Three fermion generations with two unbroken gauge symmetries from the complex sedenions
Autor: | Adam B. Gillard, Niels G. Gresnigt |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | European Physical Journal C: Particles and Fields, Vol 79, Iss 5, Pp 1-11 (2019) |
Druh dokumentu: | article |
ISSN: | 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-019-6967-1 |
Popis: | Abstract We show that three generations of leptons and quarks with unbroken Standard Model gauge symmetry $$SU(3)_c\times U(1)_{em}$$ SU(3)c×U(1)em can be described using the algebra of complexified sedenions $${\mathbb {C}}\otimes {\mathbb {S}}$$ C⊗S . A primitive idempotent is constructed by selecting a special direction, and the action of this projector on the basis of $${\mathbb {C}}\otimes {\mathbb {S}}$$ C⊗S can be used to uniquely split the algebra into three complex octonion subalgebras $${\mathbb {C}}\otimes {\mathbb {O}}$$ C⊗O . These subalgebras all share a common quaternionic subalgebra. The left adjoint actions of the 8 $${\mathbb {C}}$$ C -dimensional $${\mathbb {C}}\otimes {\mathbb {O}}$$ C⊗O subalgebras on themselves generates three copies of the Clifford algebra $${\mathbb {C}}\ell (6)$$ Cℓ(6) . It was previously shown that the minimal left ideals of $${\mathbb {C}}\ell (6)$$ Cℓ(6) describe a single generation of fermions with unbroken $$SU(3)_c\times U(1)_{em}$$ SU(3)c×U(1)em gauge symmetry. Extending this construction from $${\mathbb {C}}\otimes {\mathbb {O}}$$ C⊗O to $${\mathbb {C}}\otimes {\mathbb {S}}$$ C⊗S naturally leads to a description of exactly three generations. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |