Autor: |
Blel Mongi, Benameur Jamel |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Demonstratio Mathematica, Vol 57, Iss 1, Pp 843-868 (2024) |
Druh dokumentu: |
article |
ISSN: |
2391-4661 |
DOI: |
10.1515/dema-2024-0042 |
Popis: |
In 2008, Cai and Jiu showed that the Cauchy problem of the Navier-Stokes equations, with damping α∣u∣β−1u\alpha {| u| }^{\beta -1}u for α>0\alpha \gt 0 and β≥1\beta \ge 1 has global weak solutions in L2(R3){L}^{2}\left({{\mathbb{R}}}^{3}). In this article, we study the uniqueness and the continuity in L2(R3){L}^{2}\left({{\mathbb{R}}}^{3}) of this global weak solution. We also prove the large time decay for this global solution for β≥103\beta \ge \frac{10}{3}. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|