Autor: |
Chhunheng Lor, Ratanak Phon, Sungjoon Lim |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Microsystems & Nanoengineering, Vol 10, Iss 1, Pp 1-8 (2024) |
Druh dokumentu: |
article |
ISSN: |
2055-7434 |
DOI: |
10.1038/s41378-024-00671-y |
Popis: |
Abstract Polarization conversion and beam scanning metasurfaces are commonly used to reduce polarization mismatch and direct electromagnetic waves in a specific direction to improve the strength of a wireless signal. However, identifying suitable active and mechanically reconfigurable metasurfaces for polarization conversion and beam scanning is a considerable challenge, and the reported metasurfaces have narrow scanning ranges, are expensive, and cannot be independently controlled. In this paper, we propose a reconfigurable transmissive metasurface combined with a scissor and rotation actuator for independently controlling beam scanning and polarization conversion functions. The metasurface is constructed with rotatable unit cells (UCs) that can switch the polarization state between right-handed (RHCP) and left-handed circular polarization (LHCP) by flipping the UCs to reverse their phase variation. Moreover, independent beam scanning is achieved using the scissor actuator to linearly change the distance between the UCs. Numerical and experimental results confirm that the proposed metasurface can perform beam scanning in the range of 28° for both the positive and negative regions of a radiation pattern (RHCP and LHCP beams) at an operational frequency of 10.5 GHz. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|