The Soliton Solutions for Nonlocal Multi-Component Higher-Order Gerdjikov–Ivanov Equation via Riemann–Hilbert Problem

Autor: Jinshan Liu, Huanhe Dong, Yong Fang, Yong Zhang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Fractal and Fractional, Vol 8, Iss 3, p 177 (2024)
Druh dokumentu: article
ISSN: 2504-3110
DOI: 10.3390/fractalfract8030177
Popis: The Lax pairs of the higher-order Gerdjikov–Ivanov (HOGI) equation are extended to the multi-component formula. Then, we first derive four different types of nonlocal group reductions to this new system. To construct the solution of these four nonlocal equations, we utilize the Riemann–Hilbert method. Compared to the local HOGI equation, the solutions of nonlocal equations not only depend on the local spatial and time variables, but also the nonlocal variables. To exhibit the dynamic behavior, we consider the reverse-spacetime multi-component HOGI equation and its Riemann–Hilbert problem. When the Riemann–Hilbert problem is regular, the integral form solution can be given. Conversely, the exact solutions can be obtained explicitly. Finally, as concrete examples, the periodic solutions of the two-component nonlocal HOGI equation are given, which is different from the local equation.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje