Popis: |
Abstract Background Osteoarthritis (OA) and Rheumatoid arthritis (RA) are diseases which result in the degeneration of the joint surface articular cartilage. Matrix Metalloproteinases (MMPs) are enzymes that aid in the natural remodelling of tissues throughout the body including cartilage. However, some MMPs have been implicated in the progression of OA and RA as their expression levels and activation states can change dramatically with the onset of disease. Yet, it remains unknown if normal and arthritic joints demonstrate unique MMPs expression profiles, and if so, can the MMP expression profile be used to identify patients with early OA. In this study, the synovial fluid protein expression levels for MMPs 1, 2, 3, 7, 8, 9, 12 & 13, as well as those for the Tissue Inhibitors of MMPs (TIMPs) 1, 2, 3, & 4 were examined in highly characterized normal knee joints, and knee joints with clinically diagnosed OA (early and advanced) or RA. The purpose of this study was to determine if normal, OA, and RA patients exhibit unique expression profiles for a sub-set of MMPs, and if early OA patients have a unique MMP expression profile that could be used as an early diagnostic marker. Methods Synovial fluid was aspirated from stringently characterized normal knee joints, and in joints diagnosed with either OA (early and advanced) or RA. Multiplexing technology was employed to quantify protein expression levels for 8 MMPs and 4 TIMPs in the synovial fluid of 12 patients with early OA, 17 patients diagnosed with advanced OA, 15 with RA and 25 normal knee joints. Principle component analysis (PCA) was used to reveal which MMPs were most influential in the distinction between treatment groups. K – means clustering was used to verify the visual grouping of subjects via PCA. Results Significant differences in the expression levels of MMPs and TIMPs were observed between normal and arthritic synovial fluids (with the exception of MMP 12). PCA demonstrated that MMPs 2, 8 & 9 can be used to effectively separate individuals diagnosed with advanced arthritis from early osteoarthritic and normal individuals, however, these MMP profiles do not separate early OA from normal synovial fluid. An apparent separation between advanced OA and RA subjects was also revealed through PCA. K-means clustering verified the presence of 3 clusters: normal joints clustered with early OA, and separate clusters of advanced OA or RA. Conclusions This study demonstrates that unique MMP and TIMP expression profiles are present within normal, advanced OA and RA synovial fluid. These MMP profiles can be used to distinguish advanced OA & RA synovial fluid from early OA & normal synovial fluid, and even between synovial fluid samples from OA and RA joints. Although this methodology cannot be used for the diagnosis of early OA, high throughput multiplex technology of MMPs and TIMPs in synovial fluid may prove useful in determining the severity of the disease state, and/or quantifying the response of individuals to disease interventions. |