Autor: |
Lukas Brandl, Hans-Christian Reuss, Daniel Heidle |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Energies, Vol 17, Iss 8, p 1884 (2024) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en17081884 |
Popis: |
The reliability and efficiency of components are key aspects in the automotive industry. Electric machines become the focus of development. Thus, improvements in efficiency and reliability have gained significance. While it is established to attach sensors to the fixed parts of machines, such as stators, moving parts like rotors pose a major challenge due to the power supply. Piezoelectric generators can operate as energy harvesters on rotors and thus enable the rotor-based integration of sensors. The research in this article proposes the first approach to the design of a piezoelectric energy harvester (PEH) for an electric machine rotor dedicated to powering a wireless sensor system. After introducing the field of PEHs, the integration of the proposed device on a rotor shaft is presented. Further, a gap between the provided and needed data for the design of a PEH is identified. To overcome this gap, a method is presented, starting with the definition of the rotor shaft dimensions and the applied mechanical loads, including a method for the calculation of the imbalance of the rotor. With the first set of dimensions of the shaft and PEH, a co-simulation is performed to calculate the power output of this rotor and PEH set. The results of the simulation indicate the feasible implementation of the PEH on the rotor, providing enough energy to power a temperature sensor. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|